Loss of TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but paradoxically potentiates opioid analgesia.
نویسندگان
چکیده
Systemic administration of resiniferatoxin (RTX), an ultrapotent capsaicin analogue, removes transient receptor potential vanilloid type 1 (TRPV1)-expressing afferent neurons and impairs thermal but not mechanical nociception in adult animals. In this study, we determined how loss of TRPV1-expressing sensory neurons alters the antinociceptive effect of mu opioids and mu opioid receptors in the spinal cord. The effect of morphine and (D-Ala2,N-Me-Phe4,Gly-ol5)-enkephalin (DAMGO) was measured by testing the paw mechanical withdrawal threshold in rats treated with RTX or vehicle. RTX treatment deleted TRPV1-immunoreactive dorsal root ganglion neurons and nerve terminals in the spinal dorsal horn. Also the mu opioid receptor immunoreactivity was markedly reduced in the superficial dorsal horn of RTX-treated rats. However, RTX treatment did not affect the dorsal horn neurons labeled with both TRPV1- and mu opioid receptor-immunoreactivity. Surprisingly, intrathecal morphine or DAMGO produced a greater increase in the withdrawal threshold in RTX- than in vehicle-treated rats. The duration of the effect of intrathecal morphine and DAMGO in RTX-treated rats was also profoundly increased. Furthermore, the antinociceptive effect of systemic morphine was significantly potentiated in RTX-treated rats. The B(MAX) (but not K(D)) of [3H]-DAMGO binding and DAMGO-stimulated [35S]GTPgammaS activity in the dorsal spinal cord were significantly reduced in the RTX group. This study provides novel information that loss of TRPV1 afferent neurons eliminates presynaptic mu opioid receptors present on TRPV1-expressing afferent neurons but paradoxically potentiates the analgesic effect of mu opioid agonists. Mechano-nociception, transmitted through non-TRPV1 sensory neurons, is subject to potent modulation by mu opioid agonists.
منابع مشابه
Loss of TRPV1-Expressing Sensory Neurons Reduces Spinal Opioid Receptors But Paradoxically Potentiates Opioid Analgesia
Chen, Shao-Rui and Hui-Lin Pan. Loss of TRPV1-expressing sensory neurons reduces spinal opioid receptors but paradoxically potentiates opioid analgesia. J Neurophysiol 95: 3086–3096, 2006. First published February 8, 2006; doi:10.1152/jn.01343.2005. Systemic administration of resiniferatoxin (RTX), an ultrapotent capsaicin analogue, removes transient receptor potential vanilloid type 1 (TRPV1)-...
متن کاملMu-opioid receptor activation modulates transient receptor potential vanilloid 1 (TRPV1) currents in sensory neurons in a model of inflammatory pain.
Current therapy for inflammatory pain includes the peripheral application of opioid receptor agonists. Activation of opioid receptors modulates voltage-gated ion channels, but it is unclear whether opioids can also influence ligand-gated ion channels [e.g., the transient receptor potential vanilloid type 1 (TRPV1)]. TRPV1 channels are involved in the development of thermal hypersensitivity asso...
متن کاملFunctional interaction between TRPV1 and mu-opioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia.
The transient receptor potential vanilloid-1 (TRPV1) receptor is involved in peripheral and spinal nociceptive processing and is a therapeutic target for pain. We have shown previously that TRPV1 in the ventrolateral periaqueductal gray (VL-PAG) tonically contributes to brain stem descending antinociception by stimulating glutamate release into the rostral ventromedial medulla and off neuron ac...
متن کاملCoexpression of delta- and mu-opioid receptors in nociceptive sensory neurons.
Morphine-induced analgesia and antinociceptive tolerance are known to be modulated by interaction between delta-opioid receptors (DORs) and mu-opioid receptors (MORs) in the pain pathway. However, evidence for expression of DORs in nociceptive small-diameter neurons in dorsal root ganglia (DRG) and for coexistence of DORs with MORs and neuropeptides has recently been challenged. We now report, ...
متن کاملMu Opioid Receptors on Primary Afferent Nav1.8 Neurons Contribute to Opiate-Induced Analgesia: Insight from Conditional Knockout Mice
Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 95 5 شماره
صفحات -
تاریخ انتشار 2006